He, L*., Cho, S.*, and Blenis, J. (2025). mTORC1, the maestro of cell metabolism and growth. Genes Dev 39, 109–131. https://doi.org/10.1101/gad.352084.124
Cho, S., Chun, Y., He, L., Ramirez, C.B., Ganesh, K.S., Jeong, K., Song, J., Cheong, J.G., Li, Z., Choi, J., et al. (2023). FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Mol Cell 83, 3010-3026.e8. https://doi.org/10.1016/j.molcel.2023.07.017.
Cho, S.*, Lee, G.*, Pickering, B.F.*, Jang, C., Park, J.H., He, L., Mathur, L., Kim, S.-S., Jung, S., Tang, H.-W., et al. (2021). mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Molecular Cell 81, 2064-2075.e8. https://doi.org/10.1016/j.molcel.2021.03.010.
Lee, G., Zheng, Y.*, Cho, S.*, Jang, C., England, C., Dempsey, J.M., Yu, Y., Liu, X., He, L., Cavaliere, P.M., et al. (2017). Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171, 1545-1558.e18. https://doi.org/10.1016/j.cell.2017.10.037.
Xu, K., Wang, Y., Wang, F., Guo, Y., Ren, Y., Low, V., Cho, S., Liu, Q., Qiu, Y., Li, X., et al. (2025). SIRT6 Ameliorates Cancer Cachexia–Associated Adipose Wasting by Suppressing TNFR2 Signalling in Mice. J Cachexia Sarcopenia Muscle 16, e13734. https://doi.org/10.1002/jcsm.13734
Koundouros, N., Nagiec, M.J., Bullen, N., Noch, E.K., Burgos-Barragan, G., Li, Z., He, L., Cho, S., Parang, B., Leone, D., et al. (2025). Direct sensing of dietary ω-6 linoleic acid through FABP5-mTORC1 signaling. Science 387, eadm9805. https://doi.org/10.1126/science.adm9805.
Kim, J.-S.*, Cho, S.*, Jeong, M.-Y., Rivera-Piza, A., Kim, Y., Wu, C., Yoon, Y.E., Lee, I., Choi, J.-W., Lee, H.L., et al. (2025). β-Ionone suppresses colorectal tumorigenesis by activating OR51E2, a potential tumor suppressor. Phytomedicine, 156599. https://doi.org/10.1016/j.phymed.2025.156599
He, L*., Cho, S.*, and Blenis, J. (2025). mTORC1, the maestro of cell metabolism and growth. Genes Dev 39, 109–131. https://doi.org/10.1101/gad.352084.124
Cho, S., Chun, Y., He, L., Ramirez, C.B., Ganesh, K.S., Jeong, K., Song, J., Cheong, J.G., Li, Z., Choi, J., et al. (2023). FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Mol Cell 83, 3010-3026.e8. https://doi.org/10.1016/j.molcel.2023.07.017.
Xu, K., Guo, Y., Wang, Y., Ren, Y., Low, V., Cho, S., Ping, L., Peng, K., Li, X., Qiu, Y., et al. (2022). Decreased Enterobacteriaceae translocation due to gut microbiota remodeling mediates the alleviation of premature aging by a high‐fat diet. Aging Cell 22, e13760. https://doi.org/10.1111/acel.13760.
Li, Z., Low, V., Luga, V., Sun, J., Earlie, E., Parang, B., Shobana Ganesh, K., Cho, S., Endress, J., Schild, T., et al. (2022). Tumor-produced and aging-associated oncometabolite methylmalonic acid promotes cancer-associated fibroblast activation to drive metastatic progression. Nat Commun 13, 6239. https://doi.org/10.1038/s41467-022-33862-0.
He, L., Endress, J., Cho, S., Li, Z., Zheng, Y., Asara, J.M., and Blenis, J. (2022). Suppression of nuclear GSK3 signaling promotes serine/one-carbon metabolism and confers metabolic vulnerability in lung cancer cells. Science Advances 8, eabm8786. https://doi.org/10.1126/sciadv.abm8786.
Tang, H.-W., Weng, J.-H., Lee, W.X., Hu, Y., Gu, L., Cho, S., Lee, G., Binari, R., Li, C., Cheng, M.E., et al. (2021). mTORC1-chaperonin CCT signaling regulates m6A RNA methylation to suppress autophagy. Proceedings of the National Academy of Sciences 118, e2021945118. https://doi.org/10.1073/pnas.2021945118.
Cho, S., Lee, G., Pickering, B.F., Jang, C., Park, J.H., He, L., Mathur, L., Kim, S.-S., Jung, S., Tang, H.-W., et al. (2021). mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Molecular Cell 81, 2064-2075.e8. https://doi.org/10.1016/j.molcel.2021.03.010.
He, L., Gomes, A.P., Wang, X., Yoon, S.O., Lee, G., Nagiec, M., Cho, S., Chavez, A., Islam, T., Yu, Y., et al. (2018). mTORC1 promotes metabolic reprogramming by suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell 70, 949-960.e4. https://doi.org/10.1016/j.molcel.2018.04.024.
Lee, G., Zheng, Y., Cho, S., Jang, C., England, C., Dempsey, J.M., Yu, Y., Liu, X., He, L., Cavaliere, P.M., et al. (2017). Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171, 1545-1558.e18. https://doi.org/10.1016/j.cell.2017.10.037.
Park, J.-G., Xu, X., Cho, S., Hur, K.Y., Lee, M.-S., Kersten, S., and Lee, A.-H. (2016). CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep 6, 27938. https://doi.org/10.1038/srep27938.
So, J.-S., Cho, S., Min, S.-H., Kimball, S.R., and Lee, A.-H. (2015). IRE1α-Dependent Decay of CReP/Ppp1r15b mRNA Increases Eukaryotic Initiation Factor 2α Phosphorylation and Suppresses Protein Synthesis. Mol Cell Biol 35, 2761–2770. https://doi.org/10.1128/MCB.00215-15.
Cho, S.-Y., Cho, S., Park, E., Kim, B., Sohn, E.J., Oh, B., Lee, E.-O., Lee, H.-J., and Kim, S.-H. (2014). Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells. Bioorganic & Medicinal Chemistry Letters 24, 2560–2564. https://doi.org/10.1016/j.bmcl.2014.03.084.
Cho, S.-Y., Lee, H.-J., Lee, H.-J., Jung, D.-B., Kim, H., Sohn, E.J., Kim, B., Jung, J.H., Kwon, B.-M., and Kim, S.-H. (2013). Activation of AMP-Activated Protein Kinase α and Extracelluar Signal-Regulated Kinase Mediates CB-PIC-Induced Apoptosis in Hypoxic SW620 Colorectal Cancer Cells. Evid Based Complement Alternat Med 2013, 974313. https://doi.org/10.1155/2013/974313.
Cho, S.-Y., Lee, H.-J., Cho, S.-M., Kim, B., Jung, Y.K., and Kim, S.-H. (2013). Particled Mica, STB-HO has chemopreventive potential via G1 arrest, and inhibition of proliferation and vascular endothelial growth factor receptor 2 in HCT colorectal cancer cells. BMC Complement Altern Med 13, 189. https://doi.org/10.1186/1472-6882-13-189.
Henkin, A.H., Ortegon, A.M., Cho, S., Shen, W.-J., Falcon, A., Kraemer, F.B., Lee, S.-J., and Stahl, A. (2012). Evidence for protein-mediated fatty acid efflux by adipocytes. Acta Physiol (Oxf) 204, 562–570. https://doi.org/10.1111/j.1748-1716.2011.02367.x.
Cho, S.-Y., Lee, H.-J., Jeong, S.-J., Lee, H.-J., Kim, H.-S., Chen, C.Y., Lee, E.-O., and Kim, S.-H. (2011). Sphingosine kinase 1 pathway is involved in melatonin-induced HIF-1α inactivation in hypoxic PC-3 prostate cancer cells. Journal of Pineal Research 51, 87–93. https://doi.org/10.1111/j.1600-079X.2011.00865.x.
Cho, S.-Y., Jun, H., Lee, J.H., Jia, Y., Kim, K.H., and Lee, S.-J. (2011). Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Letters 585, 3289–3296. https://doi.org/10.1016/j.febslet.2011.09.012.
Jun, H.-J., Chung, M.J., Dawson, K., Rodriguez, R.L., Houng, S.-J., Cho, S.-Y., Jeun, J., Kim, J.-Y., Kim, K.H., Park, K.W., et al. (2010). Nutrigenomic analysis of hypolipidemic effects of Agastache rugosa essential oils in HepG2 cells and C57BL/6 mice. Food Sci Biotechnol 19, 219–227. https://doi.org/10.1007/s10068-010-0030-1.
Jeun, J., Kim, S., Cho, S.-Y., Jun, H., Park, H.-J., Seo, J.-G., Chung, M.-J., and Lee, S.-J. (2010). Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 26, 321–330. https://doi.org/10.1016/j.nut.2009.04.011.
Chung, M.J., Cho, S.-Y., Bhuiyan, M.J.H., Kim, K.H., and Lee, S.-J. (2010). Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. British Journal of Nutrition 104, 180–188. https://doi.org/10.1017/S0007114510001765.